Radon reduction in Dark Matter Detectors

Wolfgang Lorenzon

University of Michigan
(8-Dec-2019)
CPAD 2019

NIMA 903(2018) 267
http:// arxiv.org/abs/1805.11306

S
This workis supported by g



Radon - what is it and why Is It bad?

Uranium 1. radioactive noble gas
Protactinium 2. dissolvesn LXeand cannot be removed with
hot gas purifyingyetters

3. ?%?Rnis a product o8 decay (everywhere)
mean life of _,= 5.516 day
Radium = 7943 mln

4. 22?Rn is resupplied continuously from
detector components

Thorium

A dominant background in DM searches

Astatine

A cannot currently purify all 10 t dfXe

Polonium

(=P A focus on gaseous areas which are
particularly bad

5. 214Pb naked - decay can mimic Dalatter
signals

Bismuth

Lead

Thallium

Mercury 20



In-line Radon reduction system

A reduce 20mBgby a factor of 20 at a flow rate of Osfpm
. N=_g A(=5,516 d* 1.0mBqg) =476 Rn atomqsteadystate population)
A sequestratiorof atoms in activated carbon trap until m@@€Rn nucledecay
i.  think gas chromatography: X€/ v(Rn) {85 C)a 1000
Ato2oldF Ay NBY20It 2F nfFOE 3 $Aj7dagsa 0 NI 0 A ;
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Activated Charcoals tested

Saratech CarboAct Shirasagi

Density (g/cm3) | Surface area Spec. activity
(m?/g) (mBag/kg)

Shirasagi 0.45 1,240 101+8
CarboAct 0.28 1,000 0.23+0.19 15,000
Saratech 0.60 1,340 1.71+£0.20 35
Saratach(HNQ) 0.60 1,340 0.51+£0.09 135

Density of graphite2.26 g/cnd provided by Carter Hall ~ * 1/3 of price of gold
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x2 / ndf 716.1 /304
p0 1388 +2.354
p1 89.18 + 0.2758
p2 1792 +0.4224
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Time, min
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HNQ, etchedSaratech
Y2 SLPM, 1.&m, 447 g, 189 K
t =1792 min

k _-adsorption coefficient, m-carbon mass (g),

T — breakthrough time (min), F-flow rate (SL/min)



222-Rn dynamic adsorption coefficient, (I/g)

Dynamic Absorption Coefficient

N,, Ar carrier gas Xe carrier gas
Temperature, (K) Temperature, (K)
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A Expectation:
I.  N,andAr carriergas follow exponential rise w/ inverse temp (Arrhenius law)
ii. Xecarrier gas orbaratechfollows Arrhenius law (more or less)
A Surprises:
I.  Xecarrier gas orCarboAcvwiolates followsArrheniuslaw (???)
ii. k, with Xecarrier gas is about 1@x50x smaller than in He,,NandAr carrier
gas



Adsorption of Xenon gas on Charcoal
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A Xenon gas adsorption: ca 1.6 kg / kg of charcoal
I. Increases linear with decreasing temperature
ii. Increases only slightly with pressure
A Ar, N, and Hegasadsorption: tiny (below 20 g/kgf charcoal)
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222Rn output concentration, {(mBq)

Small Rn trap for LZ (GXe)
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Adsorbent mass, (kg)

A dN/dm: specific activityQaratech 0.51mBqkg)
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Adsorbent mass, (kg)

NIMA 903(2018)267

A Need 6 kg of etche®aratecho reduce Rn concentration torhBgat 0.5slpm
A Interestingly, lowest achievabRn concentratiodoes NOT depend on total mass
N, (Min) =0.70,0.45mBq N, (Min) =2.80, 1.80mBq



Full Rn trap for LZ?

A Current inline system (10 kg of etchearatech
I.  suppresses Rn concentration@Xespace >20x to about 0iBQ
ii. cannot be used to purify all 10 t &
at 500slpm
A takesT, = 58.5hrs (2.5 days) to turn over 10 t ofe
A only slightly shorter than the radon hdife ¢ = 3.8 days)
A how much can you reduce Rn concentration?
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max Rn reduction:
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Full Rn trap for LZ?

A Current Inline system (10 kg of etcheBaratech
I.  suppresses Rn concentration@Xespace >20x to about 0iBQ
ii. cannot be used to purify all 10 t &
at 500slpm

A takesT, = 58.5hrs (2.5 days) to turn over 10 t ofe
A only slightly shorter than the raddife time (t = 5.52days)
A how much can you reduce Rn concentration?
A can only reduce Rn concentration B9%(3.3X) at best {e dN/dm = 0)
AtINHzZS F2NJ Fyeé ww{ o060l Nb2y (N} LE
A need 2,000slpmto reduce it by 90% (10x)
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Full Rn trap for LZ?

A Current Inline system (10 kg of etchearatech
I. suppresses Rn concentration@Xespace >20x to about 0iBQ
ii. cannot be used to purify all 10 t Xie
at 500slpm

A takesT, = 58.5hrs (2.5 days) to turn over 10 t dfe
A only slightly shorter than the radon hdife ¢ = 3.8 days)
A how much can you reduce Rn concentration?
A can only reduce Rn concentration by 69% (3.2x) at liedtN{dm = 0)
AGNHz2S F2NI Fyeé ww{ o0O0INb2y (N} LE
A need 2,000slpmto reduce it by 90% (10x)
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Large Carbon trap for LZ?

dN
NO’UJE — N??’?e m* I Thn (1 — € m* ) m = I
dm ;
A Current inline system (10 kg of etcheSharatech
I.  0.5slpm
- suppresses Rn concentration@Xespace >20x to about 0iBQ
- m*=1.4kg
- Ny, (min) =0.7mBq
ii. at 500slpm
- m* =1,370kg

- for 10 kg trapRn_out=45mBq >Rn_in
first term dominates
- for (very) large trapRn_out=700mBqg >>Rn_in
second term dominates
N,,: (min) =700mBq(for largetrap)
(remember: traps 1.6 kie/ kg ofcharcoal)

Does Not Work
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What about a Vacuum Swing System?

Shown to reach > 99% efficiency of Vacuum-Swing Adsorption

removing Rn from room air ,‘ —_—

3 purge gas is exhausted .-r' T
s Rn levels in room air about , o
100¢ 200Bgm? L | )

Could this work foXe?

3 Xeexpensive
3z need to return into circulation

path before VSA 1’_\' 1
) _ )
3 Rnlevels in xenon typically | %

Graphic hy Jnsephodtreet > -

around 2nBgkg (e 20mBqgfor SV
10 tons ofXe)




ldeal VSA system with feedback purge
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Radontrappedin purpleloop and slowly decays away
If we assume: specifiactivity of carbon is negligible

For 99% efficient trap, at steady state 54.6% of Rn atoms e3(apesystem,
whichcorresponds to 32% radon reductionLid



Fraction of Rn
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ldeal VSA with Cold Charcoal Trap
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Radontrappedin purpleloop and slowly decays away
3 CCT increasdsne Rnatoms spend ifieedbackioop before entering back into VS/

If we assume: specifiactivity of carbon is negligible

500 slpm

For 99% VSA efficiency, and 20% CCT efficidn2ysof Rn atomsscape VSA!
For90% VSA efficiency, and 20% Effi¢iency: 32.% of Rn atomescapethe

VSA system, which corresponds to 47% radon reduction in LZ



ldeal VSA for LZ?

A Rn reduction within LZ
given the performance of
ideal VSA and Carbon trap
for 500 slpm

A Rn reduction within LZ is
defined by:
Rn_rrs /Rn_em

A The maximum reduction of
Rn in LZ with a perfect
RRS is 69.9% at a flow
rate of 500 slpm
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Realistic VSA for LZ

A If adding Rn contribution from the trap, assuming

- 60 kg of Saratech in VSA

- 0.51 mBqg/kg specifc activity

- 500 slpm

- 20 mBq into the LZ
-> N _out =20.1 mBg > N_in (-0.5% efficient)
-> trap will add more Rn
-> does not work

A How could it work?
- If specific activity: 0.01 mBqg/kg: 50x smaller than currently available
-> 85% efficient
-> 60% reduction of Rn in LZ
-> would work, but really hard to achieve (w/ charcoal-based traps)

-> use trap that does not emanate Rn

17



Conclusions

A Rn will become an even larger issue with larger Xe DM experiments

A For 10 tons Xe detectors:
- need flow rates of 2,000 slpm wo reduce Rn concentration 10x

- at 500 slpm (or below) best we can do is to reduce initial concentration 3.3x
for any kind of RRS (even for systems w/ zero specific activities)

- carbon traps of any flavors will not work (unless specific activities -> 0)
- not studied distillation tower performance

A For G3: ~50 tons Xe detectors:
- need to further suppress 2 nBg/kg Rn concentration
- or end up with 100 mBqg (maybe reduce to ~30 mBq)
- Rn likely dominant background source
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"he Langmuir Adsorption Model

A ldea:

Adsorption surface is immersed in a gas in which equilibrium has been established b/
gas molecule that get adsorbeig {rapped) and those that escape (through therm.

excitation)

Adsorbing surface forms at most a monoatomic layer

A= total area of adsorption surface, A = area occupied by monoalag@c

A Consequence:

In equilibrium: prob. of trapping an additional moleculd, .- A
prob. for adsorbed molecule to be liberated: c A

Langmuir isotherm

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
adsorption pressure @ -80 °C (bar)

1.0

at 1 bar:
A avgrate of collision / unit
area:3.5 nsl!
A Xesaturatescharcoal almost
completely
A ANDimmediately
I. really scared us before
we built the trap
ii. but (somewhat)
consistent with data
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Arrhenius Equation

K: rate constant, Ea: activation energy (J)kb: Boltzmann constant (J/K)I: temperature (K)

_Ea

k = Ae*’

A describes temperature dependence of chemical reaction rates

A Thus: whera reaction has
a rateconstant that obeys
Arrhenius equation, a plot
of In(k) versusT®! gives a
straight line!
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Inverse temperature, (1000/K)
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